On the Gibb’s phenomenon in a certain eigenfunction series
نویسندگان
چکیده
منابع مشابه
Fourier series and the Gibbs phenomenon
An understanding of Fourier series and their generalizations is important for physics and engineering students, as much for mathematical and physical insight as for applications. Students are usually confused by the so-called Gibbs phenomenon-the persistent discrepancy, an "overshoot," between a discontinuous function and its approximation by a Fourier series as the number of terms in the serie...
متن کاملOn the Gibbs Phenomenon and Its Resolution
The nonuniform convergence of the Fourier series for discontinuous functions, and in particular the oscillatory behavior of the finite sum, was already analyzed by Wilbraham in 1848. This was later named the Gibbs phenomenon. This article is a review of the Gibbs phenomenon from a different perspective. The Gibbs phenomenon, as we view it, deals with the issue of recovering point values of a fu...
متن کاملa cross-comparative dtudy between two textbook series in terms of the presentation of politeness
چکیده ندارد.
15 صفحه اولa time-series analysis of the demand for life insurance in iran
با توجه به تجزیه و تحلیل داده ها ما دریافتیم که سطح درامد و تعداد نمایندگیها باتقاضای بیمه عمر رابطه مستقیم دارند و نرخ بهره و بار تکفل با تقاضای بیمه عمر رابطه عکس دارند
Gibbs’ Phenomenon and Surface Area
If a function f is of bounded variation on TN (N ≥ 1) and {φn} is a positive approximate identity, we prove that the area of the graph of f ∗φn converges from below to the relaxed area of the graph of f . Moreover we give asymptotic estimates for the area of the graph of the square partial sums of multiple Fourier series of functions with suitable discontinuities.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1958
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1958-0094641-7